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Abstract. Under a laser field, the interface-LO-phonon amplification effect in a quantum wire
is presented in this paper. The rate of change of the phonon population is calculated, and the
amplification condition is given. It is shown that in the low temperature region, there are lower and
upper thresholds of the laser field strength for achieving phonon amplification in a quantum wire.

The process of cooling of the hot electrons in a quantum wire, excited by a laser field, has
been the subject of intense experimental and theoretical investigation in recent years [1–5]. It
has been shown that electron–phonon scattering in quantum wires not only causes instability
of the electron system, but also causes instability of the phonon system. For a particular case
of this relaxation process, the electron–phonon scattering can cause the excitation of higher
harmonics and the phonon amplification under an intense laser field [6, 7]. For the unstable
phonon system would severely affect the device performance [8, 9]; it is necessary for us to
investigate the process of phonon amplification. In a quantum wire, the electrons are localized
in the wire and form a quasi-one-dimensional electron gas while the interface phonons are
localized in the interface, so that the electron–interface-phonon scattering is responsible for the
instability of the interface. Since the electron–optical-phonon scattering rate is larger than the
electron–acoustic-phonon rate [2], only the process of interface-optical-phonon amplification
is considered in this paper. In the wire, the electrons transfer energy obtained from the laser field
to the LO phonons by the electron–phonon interaction. The phonon amplification resulting
from the electron–LO phonon interaction under a laser field leads to a phonon flux along the
wire. The focus of this work is to make it clear that how the external parameters, such as the
laser field strength and the temperature, affect the phonon amplification in a quantum wire.

In the following section, we first calculate the matrix element of the electron–interface-
LO-phonon scattering, then give the rate of change of the phonon population and finally discuss
the condition of phonon amplification.

We consider a simple model for a quantum wire [1], in which a quasi-two-dimensional
electron gas formed in a heterostructure is confined by narrow gates or split gates, and the
electrons are free along only one direction. We assume that the heterointerface is normal to the
z axis and the confinement in they axis direction is characterized by a parabolic potential of
frequency�y . For the confinement potentials along thez axis, we take a triangular potential
well. The dimensions of the hetero-interface are assumed to beS = LxLy . A polarized laser

0953-8984/99/204039+05$19.50 © 1999 IOP Publishing Ltd 4039



4040 Feng Peng

irradiates the sample normal to the interface, with its polarization along thex axis and its
strength expressed as a vector potential

EA(t) = A0Ei cos(ωt) (1)

neglecting its space distribution.
To calculate the matrix elements for the electron–interface-LO-phonon scattering, we

solve the Schrodinger equation for the electron wave function9(Er, t)
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whereF is a constant related to the concentration of the modulation doping [10]. The solution
of the Schrodinger equation for an electron in the fields is
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whereHl(
√
m�y/h̄y) are Hermite polynomials, and̃An(z) is the normalized Airy function.

The energy spectrum is

Ek,l,n = h̄2k2

2m
+ (l + 1

2)h̄�y + eFdXn (4)

whereXn is thesth zero point of the Airy function, andd = (h̄2/2meF)1/3.
We assume that the interface-LO phonons in the quantum wire still have the characteristics

of the interfacial phonon, with field operator [10]

φ(q‖, ωI ; Er‖, t) = Ceq‖zei(Eq‖Er‖−ωI t) (5)

whereEq‖ is the phonon wave vector paralleled to the interface, i.e.,

Eq‖ = qxEi + qy Ej (6)

ωI are the frequencies of interface phonons neglecting phonon dispersion, and
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Here ε0 is the low frequency dielectric constant,ε∞µ
(µ = 1, 2) are the optical dielectric

constants on both sides of the interface andωLµ andωTµ(µ = 1, 2) the LO and TO bulk
phonon frequencies, respectively.

To obtain analytical results, a single-band approximation for the electrons and a systematic
Airy function are adopted [12]. Considering the electron–phonon interaction as a perturbation,
one can calculate the transition matrix elements from initial state|k, 0, 0〉 to final state|k′, 0, 0〉
and then calculate the corresponding transition probability per unit timeT (k, 0, 0) for electron
transitions from|k, 0, 0〉 to all the|k′, 0, 0〉, that is

T (k, 0, 0) = 128πb6|C|2
h̄(2b + q‖)6
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and

3 = h̄eqxA0

mc
= h̄eqxE0

mω
(11)

whereE0 is the field strength of the laser field.3 is assumed to be large enough that the
following approximation can be employed [13]:∑

ν

∣∣∣∣Jν( 3h̄ω
)∣∣∣∣2δ(E − h̄νω) = 1

2
[δ(E −3) + δ(E +3)]. (12)

If 3 > h̄ωI and the laser–photon absorption process dominates, we can then neglect the
contribution of the firstδ function in equation (12). The condition3 > h̄ωI is also expressed
by saying that the electron drift velocity along the wire is larger than the phase velocity of the
interface phonons. The laser field gives the electron the drift velocity, and then the electron–
phonon interaction results in phonon excitation.

Considering the process of phonon absorption and emission simultaneously in a similar
way as in our previous calculations [6, 7], the kinetic equation for the phonon population is
given by

dNqx,qy
dt

= γqx,qyNqx,qy (13)

whereγqx,qy is the rate of change of the phonon population. This can be expressed as

γqx,qy =
∑
k
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wheref (k, 0, 0) is the Fermi distribution function, namely
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whereµ is the chemical potential. Under a laser field and when the electron drift velocity
exceeds the phase velocity of the phonons, a detailed calculation yields
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This shows that only when3 > h̄ωI does the rateγqx,qy become positive and optical-phonon
amplification is achieved. Equation (16) also shows that the rate of change of the phonon
population is sensitive to the phonon wave vectorEq‖, and it has a maximum value ifqx = qlx
(the lower limit ofqx), andqy = 0. At a fixed valueqy , the thinner the quantum wire (�y taken
as larger value), the larger the rateγqx,qy will be. This demonstrates that the electron–phonon
interaction in the quantum wire is stronger than that in the quantum well.
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Figure 1. The rateγqx ,qy as a function of the temperature with different field strengths. Dashed,

dot–dashed, and solid lines for laser field strengthE0 = 4.90 V cm−1, E0 = 4.95 V cm−1 and
E0 = 5.00 V cm−1, respectively.

When the chemical potential is close to the energy of the electron ground state, the
following condition is satisfied
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In this condition and at low temperature, equation (16) can be approximated as
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Since the electron number in the quantum wire is

N = Lx

π

∫ +∞

−∞
dk exp

{
− h̄2k2

2mkT
−

1
2h̄�y + eFdX0 − µ

kT

}
(19)

we obtain

exp

{
−

1
2h̄�y + eFdX0 − µ

kT

}
= N

Lx

(
πh̄2

2m

)1/2

. (20)

Equation (20) is substituted into equation (18); we obtain
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The rateγqx,qy at low temperature is given as a function of temperature. To analyse an
external field how to affect phonon amplification, we take AlxGa1−xAs–GaAs wire for an
example to calculate the rateγqx,qy for different field strengths. The parameters are chosen as
m = 0.068m0 (m0 for the electron static mass),ωI = 6.871× 1013 s−1, ω = 4.82× 1013 s−1

andqx = 1.0× 106 cm−1. The calculated results are plotted in figure 1. It shows that at
low temperature, only a laser field with adequate strength can induce the amplification of the
phonons with certain one wavevectorqx . It is because only when the electron-drift energy
3 is comparable with the thermal-motion energy of the phonons do they couple each other
efficiently. As the electron-drift energy is proportional to the field strengthE0, and the thermal-

motion energy of the phonons is proportional to ¯hωIe−
h̄ωI
kT at low temperature [14], the phonon

amplification induced by the weaker laser field will be achieved at low temperature.
In conclusion, we have calculated the rate of change of the interface-phonon population

of a quantum wire under laser excitation. The results show that an external field with adequate
strength can induce phonon amplification in a quantum wire. When the phonon wave vector
is small, the rate of change of the phonon population is large. Only whenqx is positive,
γqx,qy > 0, will the phonon population increase with time. Therefore, it is possible for us to
obtain a quasi-travelling wave of amplified phonons. The propagating direction is the same as
the direction of the vector potential. Our results also show that the electron–phonon interaction
in a quantum wire is stronger than that in the quantum well.
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